0%

Welcome to Hexo! This is your very first post. Check documentation for more info. If you get any problems when using Hexo, you can find the answer in troubleshooting or you can ask me on GitHub.

Quick Start

Create a new post

1
$ hexo new "My New Post"

More info: Writing

Run server

1
$ hexo server

More info: Server

Generate static files

1
$ hexo generate

More info: Generating

Deploy to remote sites

1
$ hexo deploy

More info: Deployment

Reference

Definition of Levy process

A Levy process, \(\{L(t),t\in \mathbb{R}\}\) is a process with the following \(4\) properties:

  1. \(L(0)=0\)

  2. \(L(t)-L(s)\) has the same distribution as \(L(t-s)\) for \(\forall\ s,t\) such that \(s\leq t\)

  3. If \((s,t)\) and \((u,v)\) are disjoint intervals then \(L(t)-L(s)\) and \(L(v)-L(u)\) are independent

  4. \(\{L(t)\}\) is continuous in probability, that is, for \(\forall\ \epsilon>0\) and for \(\forall\ t\in \mathbb{R}\) \[ \underset{s\rightarrow t}{lim}P(\left|L(t)-L(s)\right|>\epsilon)=0 \]

Brownian motion

A well-known example of the levy process is the Brownian Motion \[ \begin{gather} L(t)\sim N(\mu t,\sigma^2t)\\ t\geq0,\ \mu\in \mathbb{R}\ and\ \sigma>0 \end{gather} \] To show that it satisfies property (ii) of Levy process, we can calculate the corresponding expectation and variance \[ \begin{gather} E[L(t)-L(s)]\\ =E[L(t)]-E[L(s)]\\ =\mu(t-s)\\ =E[L(t-s)] \end{gather} \]

\[ \begin{gather} Var[L(t)-L(s)]\\ =E[(L(t)-L(s)-E[L(t)-L(s)])^2]\\ =E[[L(t)-L(s)]^2-2[L(t)-L(s)]\mu(t-s)+\mu^2(t-s)^2]\\ =E[L^2(t)+L^2(s)-2L(t)L(s)]-\mu^2(t-s)^2\\ =\sigma^2t+\mu^2t^2+\sigma^2s+\mu^2s^2-\mu^2(t-s)^2-2E[L(t)L(s)]\\ =\sigma^2(t+s)+\mu^2(t^2+s^2-t^2-s^2+2ts)-2E[L(t)L(s)]\\ =\sigma^2(t+s)+2\mu^2ts-2E[L(t)L(s)]\\ =\sigma^2(t+s)+2\mu^2ts-2E[[L(s)+L(t)-L(s)]L(s)] \end{gather} \]

Since \(L(t)-L(s)\text{ is independent to }L(s)\), we have \[ \begin{gather} Var[L(t)-L(s)]\\ =\sigma^2(t+s)+2\mu^2ts-2[E[L^2(s)]+E[L(t)-L(s)]E[L(s)]]\\ =\sigma^2(t+s)+2\mu^2ts-2(\mu^2s^2+\sigma^2s+\mu(t-s)\mu s)\\ =\sigma^2(t+s)-2\sigma^2s\\ =\sigma^2(t-s)\\ =Var[L(t-s)]\ \end{gather} \] Hence \(L(t)-L(s)\) has the same distribution of \(L(t-s)\)

Reference

  1. Brockwell, P. J., & Davis, R. A. (2002). Introduction to time series and forecasting. New York: Springer.